EGLN2/PHD1 peptide


Recognises the human Egl nine homolog 2 (EGLN2) protein, an important oxygen sensor

See full description

Catalogue number crb1200422
Antibody Anti-EGLN2/PHD1 antibody
Antigen Peptide EGLN2/PHD1 peptide
Protein ID Uniprot ID - Q96KS0
Aliases Egl nine homolog 2, EGLN2 Isoform p43, EGLN2 Isoform p40, Prolyl hydroxylase domain-containing protein 1, PHD1, Hypoxia-inducible factor prolyl hydroxylase 1, HIF-PH1, HPH-1
Cross-Reactivity Human
Storage -20°C

Zhang, R., Lai, L., He, J., Chen, C., You, D., Duan, W., Dong, X., Zhu, Y., Lin, L., Shen, S., Guo, Y., Su, L., Shafer, A., Moran, S., Fleischer, T., Bjaanæs, M., Karlsson, A., Planck, M., Staaf, J., Helland, Å., Esteller, M., Wei, Y., Chen, F. and Christiani, D. (2019). EGLN2 DNA methylation and expression interact with HIF1A to affect survival of early-stage NSCLC. Epigenetics, 14(2), 118-129. PMID: 30665327


Zhang, J., Wang, C., Chen, X., Takada, M., Fan, C., Zheng, X., Wen, H., Liu, Y., Wang, C., Pestell, R., Aird, K., Kaelin, W., Liu, X. and Zhang, Q. (2015). EglN2 associates with the NRF1‐PGC1α complex and controls mitochondrial function in breast cancer. EMBO J, 34(23), 2953-2970. PMID: 26492917

Specificity Protein
The EglN2/PHD1 prolyl hydroxylase domain-containing enzyme is an important oxygen sensor and is responsible for the oxygen-dependent degradation and hydroxylation of hypoxia‐inducible factors (HIFs). HIFs are transcription factors that respond to decreases in available oxygen in the cellular environment (hypoxia). In the presence of oxygen EglN2/PHD1 hydroxylates HIFα subunits on conserved prolines within the oxygen-dependent degradation (ODD) domain, targeting them for degradation. Under hypoxic conditions, EglNs lose their ability to hydroxylate HIFα subunits leading to HIFα stabilisation and dimerization with HIF1β (ARNT). Dimerization activates transcription of many genes linked to hypoxic adaptation, such those involved in cell proliferation, metabolism, and angiogenesis.

Due to their role in hypoxia, EglNs contribute to tumourigenesis. EglN2 mRNA levels are higher in several cancers for example in oestrogen receptor-α (ERα) positive breast cancer compared to ERα‐negative breast cancer. Depleting EglN2 decreases cell proliferation in breast cancer models by diminishing cyclin D1 transcription.

EGLN2/PHD1 peptide

Cat No. Pack Size Price Qty